Kamis, 03 November 2011
For the healthcare workers that are exposed to antineoplastic agents as part of their work practice, precautions should be taken to eliminate or reduce exposure as much as possible. There already is a limitation in cytotoxics dissolution in Australia and the United States to 20 dissolutions per pharmacist/nurse, since pharmacists that prepare these drugs or nurses that may prepare and/or administer them are the two occupational groups with the highest potential exposure to antineoplastic agents. In addition, physicians and operating room personnel may also be exposed through the treatment of patients. Hospital staff, such as shipping and receiving personnel, custodial workers, laundry workers, and waste handlers, all have potential exposure to these drugs during the course of their work. The increased use of antineoplastic agents in veterinary oncology also puts these workers at risk for exposure to these drugs.[35]
Chemotherapy is highly effective in some cancers, useless in others, and unnecessary in still others.
Taking all forms of cancer together, people who receive chemotherapy increase their odds of living five years after diagnosis by about two percentage points (e.g., from about 61% being alive after five years to about 63% of them being alive after five years).[34] However, this overall rate obscures the wide variation. Cytotoxic chemotherapy produces much larger gains for some forms of cancer, including testicular cancer (about 40% of the men who live five years after diagnosis are alive because of chemotherapy), lymphomas (about 13%), and cervical cancer (12%).[34] By contrast, chemotherapy is essentially useless in other cancers, including prostate cancer, melanoma of the skin, multiple myeloma, bladder cancer, kidney cancer, and pancreatic cancer: people who receive chemotherapy for these conditions are just as likely to die within five years as people who do not.[34] Chemotherapy only slightly improves survival for some of the most common forms of cancer, including breast cancers (1.5%) and lung cancers (1.5%).[34]
Chemotherapy is potentially teratogenic during pregnancy, especially during the first trimester, to the extent that abortion usually is recommended if pregnancy in this period is found during chemotherapy.[31] Second- and third-trimester exposure does not usually increase the teratogenic risk and adverse effects on cognitive development, but it may increase the risk of various complications of pregnancy and fetal myelosuppression.[31]
In males previously having undergone chemotherapy or radiotherapy, there appears to be no increase in genetic defects or congenital malformations in their children conceived after therapy.[31] The use of assisted reproductive technologies and micromanipulation techniques might increase this risk.[31] In females previously having undergone chemotherapy, miscarriage and congenital malformations are not increased in subsequent conceptions.[31] However, when in vitro fertilization and embryo cryopreservation is practised between or shortly after treatment, possible genetic risks to the growing oocytes exist, and hence it has been recommended that the babies should be screened.[31]
Some types of chemotherapy are gonadotoxic and may cause infertility.[29] Chemotherapies with high risk include procarbazine and other alkylating drugs such as cyclophosphamide, ifosfamide, busulfan, melphalan, chlorambucil and chlormethine.[29] Drugs with medium risk include doxorubicin and platinum analogs such as cisplatin and carboplatin.[29] On the other hand, therapies with low risk of gonadotoxicity include plant derivatives such as vincristine and vinblastine, antibiotics such as bleomycin and dactinomycin and antimetabolites such as methotrexate, mercaptopurine and 5-fluoruracil.[29]
Patients may choose between several methods of fertility preservation prior to chemotherapy, including cryopreservation of semen, ovarian tissue, oocytes or embryos.[30] As more than half of cancer patients are elderly, this adverse effect is only relevant for a minority of patients.
Development of secondary neoplasia after successful chemotherapy and/or radiotherapy treatment can occur. The most common secondary neoplasm is secondary acute myeloid leukemia, which develops primarily after treatment with alkylating agents or topoisomerase inhibitors.[27] Survivors of childhood cancer are more than 13 times as likely to get a secondary neoplasm during the 30 years after treatment than the general population.[28] Not all of this increase can be attributed to chemotherapy.
Nausea and vomiting are two of the most feared cancer treatment-related side effects for cancer patients and their families. In 1983, Coates et al. found that patients receiving chemotherapy ranked nausea and vomiting as the first and second most severe side effects, respectively. Up to 20% of patients receiving highly emetogenic agents in this era postponed, or even refused, potentially curable treatments. [26] Chemotherapy-induced nausea and vomiting (CINV) is common with many treatments and some forms of cancer. Since the 1990s, several novel classes of antiemetics have been developed and commercialized, becoming a nearly universal standard in chemotherapy regimens, and helping to successfully manage these symptoms in a large portion of patients. Effective mediation of these unpleasant and sometimes crippling symptoms results in increased quality of life for the patient and more efficient treatment cycles, due to less stoppage of treatment due to better tolerance by the patient, and due to better overall health of the patient.
Virtually all chemotherapeutic regimens can cause depression of the immune system, often by paralysing the bone marrow and leading to a decrease of white blood cells, red blood cells, and platelets. Anemia and thrombocytopenia when they occur, are improved with blood transfusion. Neutropenia (a decrease of the neutrophil granulocyte count below 0.5 x 109/litre) can be improved with synthetic G-CSF (granulocyte-colony stimulating factor, e.g., filgrastim, lenograstim).
In very severe myelosuppression, which occurs in some regimens, almost all the bone marrow stem cells (cells that produce white and red blood cells) are destroyed, meaning allogenic or autologous bone marrow cell transplants are necessary. (In autologous BMTs, cells are removed from the patient before the treatment, multiplied and then re-injected afterwards; in allogenic BMTs the source is a donor.) However, some patients still develop diseases because of this interference with bone marrow.
In Japan the government has approved the use of some medicinal mushrooms like Trametes versicolor, to counteract depression of the immune system in patients undergoing chemotherapy.[25]
Chemotherapeutic techniques have a range of side effects that depend on the type of medications used. The most common medications mainly affect the fast-dividing cells of the body, such as blood cells and the cells lining the mouth, stomach, and intestines. Common side effects include:[22]
  • Depression of the immune system, which can result in potentially fatal infections. Although patients are encouraged to wash their hands, avoid sick people, and to take other infection-reducing steps, about 85% of infections are due to naturally occurring microorganisms in the patient's own gastrointestinal tract (including oral cavity) and skin.[23] This may manifest as systemic infections, such as sepsis, or as localized outbreaks, such as Herpes simplex, shingles, or other members of the Herpesviridea.[24] Sometimes, chemotherapy treatments are postponed because the immune system is suppressed to a critically low level.
  • Fatigue. The treatment can be physically exhausting for the patient, who might already be very tired from cancer-related fatigue. It may produce mild to severe anemia. Treatments to mitigate anemia include hormones to boost blood production (erythropoietin), iron supplements, and blood transfusions.
  • Tendency to bleed easily. Medications that kill rapidly dividing cells or blood cells are likely to reduce the number of platelets in the blood, which can result in bruises and bleeding. Extremely low platelet counts may be temporarily boosted through platelet transfusions. Sometimes, chemotherapy treatments are postponed to allow platelet counts to recover.
  • Gastrointestinal distress. Nausea and vomiting are common side effects of chemotherapeutic medications that kill fast-dividing cells. This can also produce diarrhea or constipation. Malnutrition and dehydration can result when the patient doesn't eat or drink enough, or when the patient vomits frequently, because of gastrointestinal damage. This can result in rapid weight loss, or occasionally in weight gain, if the patient eats too much in an effort to allay nausea or heartburn. Weight gain can also be caused by some steroid medications. These side effects can frequently be reduced or eliminated with antiemetic drugs. Self-care measures, such as eating frequent small meals and drinking clear liquids or ginger tea, are often recommended. This is a temporary effect, and frequently resolves within a week of finishing treatment.
  • Hair loss. Some medications that kill rapidly dividing cells cause dramatic hair loss; other medications may cause hair to thin. These are temporary effects: hair usually starts growing back a few weeks after the last treatment, sometimes with a tendency to curl that may be called a "chemo perm".
Damage to specific organs may occur, with resultant symptoms:
Most chemotherapy is delivered intravenously, although a number of agents can be administered orally (e.g., melphalan, busulfan, capecitabine). In some cases, isolated limb perfusion (often used in melanoma), or isolated infusion of chemotherapy into the liver or the lung have been used. The main purpose of these approaches is to deliver a very high dose of chemotherapy to tumour sites without causing overwhelming systemic damage.
Depending on the patient, the cancer, the stage of cancer, the type of chemotherapy, and the dosage, intravenous chemotherapy may be given on either an inpatient or an outpatient basis. For continuous, frequent or prolonged intravenous chemotherapy administration, various systems may be surgically inserted into the vasculature to maintain access. Commonly used systems are the Hickman line, the Port-a-Cath or the PICC line. These have a lower infection risk, are much less prone to phlebitis or extravasation, and abolish the need for repeated insertion of peripheral cannulae.
Harmful and lethal toxicity from chemotherapy limits the dosage of chemotherapy that can be given. Some tumors can be destroyed by sufficiently high doses of chemotherapeutic agents. However, these high doses cannot be given because they would be fatal to the patient.
Dosage of chemotherapy can be difficult: If the dose is too low, it will be ineffective against the tumor, whereas, at excessive doses, the toxicity (side effects, neutropenia) will be intolerable to the patient. This has led to the formation of detailed "dosing schemes" in most hospitals, which give guidance on the correct dose and adjustment in case of toxicity. In immunotherapy, they are in principle used in smaller dosages than in the treatment of malignant diseases.
In most cases, the dose is adjusted for the patient's body surface area, a measure that correlates with blood volume. The BSA is usually calculated with a mathematical formula or a nomogram, using a patient's weight and height, rather than by direct measurement.
Electrochemotherapy is the combined treatment in which injection of a chemotherapeutic drug is followed by application of high voltage electric pulses locally to the tumor. The treatment enables the chemotherapeutic drugs, which otherwise cannot or hardly go through the membrane of cells (such as bleomycin and cisplatin), to enter the cancer cells. Hence greater effectiveness of antitumor treatment is achieved. Clinical electrochemotherapy has been successfully used for treatment of cutaneous and subcutaneous tumors irrespective of their histological origin [12] [13] [14] [15][16][17][18]. The method has been reported as safe, simple and highly effective in all reports on clinical use of electrochemotherapy. According to the ESOPE project (European Standard Operating Procedures of Electrochemotherapy), the Standard Operating Procedures (SOP) for electrochemotherapy were prepared, based on the experience of the leading European cancer centres on electrochemotherapy.[14][19] Recently, new electrochemotherapy modalities have been developed for treatment of internal tumors using surgical procedures, endoscopic routes or percutaneous approaches to gain access to the treatment area.[20][21]
Specially targeted delivery vehicles aim to increase effective levels of chemotherapy for tumor cells while reducing effective levels for other cells. This should result in an increased tumor kill and/or reduced toxicity.
Specially targeted delivery vehicles have a differentially higher affinity for tumor cells by interacting with tumor-specific or tumour-associated antigens.
In addition to their targeting component, they also carry a payload - whether this is a traditional chemotherapeutic agent, or a radioisotope or an immune stimulating factor. Specially targeted delivery vehicles vary in their stability, selectivity, and choice of target, but, in essence, they all aim to increase the maximum effective dose that can be delivered to the tumor cells. Reduced systemic toxicity means that they can also be used in sicker patients, and that they can carry new chemotherapeutic agents that would have been far too toxic to deliver via traditional systemic approaches.
Podophyllotoxin is a plant-derived compound which is said to help with digestion as well as used to produce two other cytostatic drugs, etoposide and teniposide. They prevent the cell from entering the G1 phase (the start of DNA replication) and the replication of DNA (the S phase). The exact mechanism of its action is not yet known.
The substance has been primarily obtained from the American Mayapple (Podophyllum peltatum). Recently it has been discovered that a rare Himalayan Mayapple (Podophyllum hexandrum) contains it in a much greater quantity, but, as the plant is endangered, its supply is limited. Studies have been conducted to isolate the genes involved in the substance's production, so that it could be obtained recombinantly.
The majority of chemotherapeutic drugs can be divided in to alkylating agents, antimetabolites, anthracyclines, plant alkaloids, topoisomerase inhibitors, and other antitumour agents.[11] All of these drugs affect cell division or DNA synthesis and function in some way.
Some newer agents do not directly interfere with DNA. These include monoclonal antibodies and the new tyrosine kinase inhibitors e.g. imatinib mesylate (Gleevec or Glivec), which directly targets a molecular abnormality in certain types of cancer (chronic myelogenous leukemia, gastrointestinal stromal tumors). These are examples of targeted therapies.
In addition, some drugs that modulate tumor cell behaviour without directly attacking those cells may be used. Hormone treatments fall into this category.
Where available, Anatomical Therapeutic Chemical Classification System codes are provided for the major categories.
There are a number of strategies in the administration of chemotherapeutic drugs used today. Chemotherapy may be given with a curative intent or it may aim to prolong life or to palliate symptoms.
Combined modality chemotherapy is the use of drugs with other cancer treatments, such as radiation therapy or surgery. Most cancers are now treated in this way. Combination chemotherapy is a similar practice that involves treating a patient with a number of different drugs simultaneously. The drugs differ in their mechanism and side effects. The biggest advantage is minimising the chances of resistance developing to any one agent.
In neoadjuvant chemotherapy (preoperative treatment) initial chemotherapy is designed to shrink the primary tumour, thereby rendering local therapy (surgery or radiotherapy) less destructive or more effective.
Adjuvant chemotherapy (postoperative treatment) can be used when there is little evidence of cancer present, but there is risk of recurrence. This can help reduce chances of developing resistance if the tumour does develop. It is also useful in killing any cancerous cells which have spread to other parts of the body. This is often effective as the newly growing tumours are fast-dividing, and therefore very susceptible.
Palliative chemotherapy is given without curative intent, but simply to decrease tumor load and increase life expectancy. For these regimens, a better toxicity profile is generally expected.
All chemotherapy regimens require that the patient be capable of undergoing the treatment. Performance status is often used as a measure to determine whether a patient can receive chemotherapy, or whether dose reduction is required. Because only a fraction of the cells in a tumor die with each treatment (fractional kill), repeated doses must be administered to continue to reduce the size of the tumor.[9] Current chemotherapy regimens apply drug treatment in cycles, with the frequency and duration of treatments limited by toxicity to the patient.[10]
Cancer is the uncontrolled growth of cells coupled with malignant behavior: invasion and metastasis. Cancer is thought to be caused by the interaction between genetic susceptibility and environmental toxins.
In the broad sense, most chemotherapeutic drugs work by impairing mitosis (cell division), effectively targeting fast-dividing cells. As these drugs cause damage to cells they are termed cytotoxic. Some drugs cause cells to undergo apoptosis (so-called "self programmed cell death").
Scientists have yet to identify specific features of malignant and immune cells that would make them uniquely targetable (barring some recent examples, such as the Philadelphia chromosome as targeted by imatinib). This means that other fast-dividing cells, such as those responsible for hair growth and for replacement of the intestinal epithelium (lining), are also often affected. However, some drugs have a better side effect profile than others, enabling doctors to adjust treatment regimens to the advantage of patients in certain situations.
As chemotherapy affects cell division, tumors with high growth fractions (such as acute myelogenous leukemia and the aggressive lymphomas, including Hodgkin's disease) are more sensitive to chemotherapy, as a larger proportion of the targeted cells are undergoing cell division at any time. Malignancies with slower growth rates, such as indolent lymphomas, tend to respond to chemotherapy much more modestly.
Drugs affect "younger" tumors (i.e., more differentiated) more effectively, because mechanisms regulating cell growth are usually still preserved. With succeeding generations of tumor cells, differentiation is typically lost, growth becomes less regulated, and tumors become less responsive to most chemotherapeutic agents. Near the center of some solid tumors, cell division has effectively ceased, making them insensitive to chemotherapy. Another problem with solid tumors is the fact that the chemotherapeutic agent often does not reach the core of the tumor. Solutions to this problem include radiation therapy (both brachytherapy and teletherapy) and surgery.
Over time, cancer cells become more resistant to chemotherapy treatments. Recently, scientists have identified small pumps on the surface of cancer cells that actively move chemotherapy from inside the cell to the outside. Research on p-glycoprotein and other such chemotherapy efflux pumps, is currently ongoing. Medications to inhibit the function of p-glycoprotein are undergoing testing as of June, 2007 to enhance the efficacy of chemotherapy.
The word "chemotherapy" without a modifier nowadays usually refers to cancer treatment, but its historical meaning is broader. In the most simple sense, chemotherapy is the treatment of an ailment by chemicals[8] especially by killing micro-organisms. As such, the term has been used for non-oncological use, such as the use of antibiotics (antibacterial chemotherapy). In that sense, the first modern chemotherapeutic agent was arsphenamine, an arsenic compound discovered in 1909 and used to treat syphilis. This was later followed by sulfonamides (sulfa drugs) and penicillin. Other uses that have been termed chemotherapy are the treatment of autoimmune diseases such as multiple sclerosis, dermatomyositis, polymyositis, lupus, rheumatoid arthritis (See DMARDs) and the suppression of transplant rejections (see immunosuppression).
The use of minerals and plant-based medicines to treat diseases is believed to date back to prehistoric medicine.
The first use of drugs to treat cancer, however, was in the early 20th century, although it was not originally intended for that purpose. Mustard gas was used as a chemical warfare agent during World War I and was discovered to be a potent suppressor of hematopoiesis (blood production).[1] A similar family of compounds known as nitrogen mustards were studied further during World War II at Yale University.[2] It was reasoned that an agent that damaged the rapidly growing white blood cells might have a similar effect on cancer. Therefore, in December 1942, several patients with advanced lymphomas (cancers of certain white blood cells) were given the drug by vein, rather than by breathing the irritating gas.[2] Their improvement, although temporary, was remarkable.[3][4] Concurrently, during a military operation in World War II, following a German air raid on the Italian harbour of Bari, several hundred people were accidentally exposed to mustard gas, transported there by the allied forces to prepare for possible retaliation in the event of German use of chemical warfare. The survivors were later found to have very low white blood cell counts.[5][6] After WWII was over and the reports declassified, the experiences converged and led researchers to look for other substances that might have similar effects against cancer. The first chemotherapy drug to be developed from this line of research was mustine. Since then, many other drugs have been developed to treat cancer, and drug development has exploded into a multibillion-dollar industry, although the principles and limitations of chemotherapy discovered by the early researchers still apply.[7]
Chemotherapy (sometimes cancer chemotherapy) is the treatment of cancer with an antineoplastic drug or with a combination of such drugs into a standardized treatment regimen.
Most commonly, chemotherapy acts by killing cells that divide rapidly, one of the main properties of most cancer cells. This means that it also harms cells that divide rapidly under normal circumstances: cells in the bone marrow, digestive tract and hair follicles. This results in the most common side effects of chemotherapy: myelosuppression (decreased production of blood cells, hence also immunosuppression), mucositis (inflammation of the lining of the digestive tract), and alopecia (hair loss).
Newer anticancer drugs act directly against abnormal proteins in cancer cells; this is termed targeted therapy and is technically not chemotherapy.
Although reported incidence rates have increased in the past 20 years, mesothelioma is still a relatively rare cancer. The incidence rate varies from one country to another, from a low rate of less than 1 per 1,000,000 in Tunisia and Morocco, to the highest rate in Britain, Australia and Belgium: 30 per 1,000,000 per year.[38] For comparison, populations with high levels of smoking can have a lung cancer incidence of over 1,000 per 1,000,000. Incidence of malignant mesothelioma currently ranges from about 7 to 40 per 1,000,000 in industrialized Western nations, depending on the amount of asbestos exposure of the populations during the past several decades.[39] It has been estimated that incidence may have peaked at 15 per 1,000,000 in the United States in 2004. Incidence is expected to continue increasing in other parts of the world. Mesothelioma occurs more often in men than in women and risk increases with age, but this disease can appear in either men or women at any age. Approximately one fifth to one third of all mesotheliomas are peritoneal.
Between 1940 and 1979, approximately 27.5 million people were occupationally exposed to asbestos in the United States.[40] Between 1973 and 1984, the incidence of pleural mesothelioma among Caucasian males increased 300%. From 1980 to the late 1990s, the death rate from mesothelioma in the USA increased from 2,000 per year to 3,000, with men four times more likely to acquire it than women. These rates may not be accurate, since it is possible that many cases of mesothelioma are misdiagnosed as adenocarcinoma of the lung, which is difficult to differentiate from mesothelioma.
All of the standard approaches to treating solid tumors—radiation, chemotherapy, and surgery—have been investigated in patients with malignant pleural mesothelioma. Although surgery, by itself, is not very effective, surgery combined with adjuvant chemotherapy and radiation (trimodality therapy) has produced significant survival extension (3–14 years) among patients with favorable prognostic factors.[34] However, other large series of examining multimodality treatment have only demonstrated modest improvement in survival (median survival 14.5 months and only 29.6% surviving 2 years).[28] Reducing the bulk of the tumor with cytoreductive surgery is key to extending survival. Two surgeries have been developed: extrapleural pneumonectomy and pleurectomy/decortication. The indications for performing these operations are unique. The choice of operation depends on the size of the patient's tumor. This is an important consideration because tumor volume has been identified as a prognostic factor in mesothelioma.[35] Pleurectomy/decortication spares the underlying lung and is performed in patients with early stage disease when the intention is to remove all gross visible tumor (macroscopic complete resection), not simply palliation.[36] Extrapleural pneumonectomy is a more extensive operation that involves resection of the parietal and visceral pleurae, underlying lung, ipsilateral diaphragm, and ipsilateral pericardium. This operation is indicated for a subset of patients with more advanced tumors, who can tolerate a pneumonectomy.[37]
A procedure known as heated intraoperative intraperitoneal chemotherapy was developed by Paul Sugarbaker at the Washington Cancer Institute.[32] The surgeon removes as much of the tumor as possible followed by the direct administration of a chemotherapy agent, heated to between 40 and 48°C, in the abdomen. The fluid is perfused for 60 to 120 minutes and then drained.
This technique permits the administration of high concentrations of selected drugs into the abdominal and pelvic surfaces. Heating the chemotherapy treatment increases the penetration of the drugs into tissues. Also, heating itself damages the malignant cells more than the normal cells.
This technique is also used in patients with malignant pleural mesothelioma.[33]
Treatment regimens involving immunotherapy have yielded variable results. For example, intrapleural inoculation of Bacillus Calmette-Guérin (BCG) in an attempt to boost the immune response, was found to be of no benefit to the patient (while it may benefit patients with bladder cancer). Mesothelioma cells proved susceptible to in vitro lysis by LAK cells following activation by interleukin-2 (IL-2), but patients undergoing this particular therapy experienced major side effects. Indeed, this trial was suspended in view of the unacceptably high levels of IL-2 toxicity and the severity of side effects such as fever and cachexia. Nonetheless, other trials involving interferon alpha have proved more encouraging with 20% of patients experiencing a greater than 50% reduction in tumor mass combined with minimal side effects.
Chemotherapy is the only treatment for mesothelioma that has been proven to improve survival in randomised and controlled trials. The landmark study published in 2003 by Vogelzang and colleagues compared cisplatin chemotherapy alone with a combination of cisplatin and pemetrexed (brand name Alimta) chemotherapy in patients who had not received chemotherapy for malignant pleural mesothelioma previously and were not candidates for more aggressive "curative" surgery.[30] This trial was the first to report a survival advantage from chemotherapy in malignant pleural mesothelioma, showing a statistically significant improvement in median survival from 10 months in the patients treated with cisplatin alone to 13.3 months in the group of patients treated with cisplatin in the combination with pemetrexed and who also received supplementation with folate and vitamin B12. Vitamin supplementation was given to most patients in the trial and pemetrexed related side effects were significantly less in patients receiving pemetrexed when they also received daily oral folate 500mcg and intramuscular vitamin B12 1000mcg every 9 weeks compared with patients receiving pemetrexed without vitamin supplementation. The objective response rate increased from 20% in the cisplatin group to 46% in the combination pemetrexed group. Some side effects such as nausea and vomiting, stomatitis, and diarrhoea were more common in the combination pemetrexed group but only affected a minority of patients and overall the combination of pemetrexed and cisplatin was well tolerated when patients received vitamin supplementation; both quality of life and lung function tests improved in the combination pemetrexed group. In February 2004, the United States Food and Drug Administration approved pemetrexed for treatment of malignant pleural mesothelioma. However, there are still unanswered questions about the optimal use of chemotherapy, including when to start treatment, and the optimal number of cycles to give.
Cisplatin in combination with raltitrexed has shown an improvement in survival similar to that reported for pemetrexed in combination with cisplatin, but raltitrexed is no longer commercially available for this indication. For patients unable to tolerate pemetrexed, cisplatin in combination with gemcitabine or vinorelbine is an alternative, or vinorelbine on its own, although a survival benefit has not been shown for these drugs. For patients in whom cisplatin cannot be used, carboplatin can be substituted but non-randomised data have shown lower response rates and high rates of haematological toxicity for carboplatin-based combinations, albeit with similar survival figures to patients receiving cisplatin.[31]
In January 2009, the United States FDA approved using conventional therapies such as surgery in combination with radiation and or chemotherapy on stage I or II Mesothelioma after research conducted by a nationwide study by Duke University concluded an almost 50 point increase in remission rates.
For patients with localized disease, and who can tolerate a radical surgery, radiation is often given post-operatively as a consolidative treatment. The entire hemi-thorax is treated with radiation therapy, often given simultaneously with chemotherapy. Delivering radiation and chemotherapy after a radical surgery has led to extended life expectancy in selected patient populations with some patients surviving more than 5 years. As part of a curative approach to mesothelioma, radiotherapy is also commonly applied to the sites of chest drain insertion, in order to prevent growth of the tumor along the track in the chest wall.
Although mesothelioma is generally resistant to curative treatment with radiotherapy alone, palliative treatment regimens are sometimes used to relieve symptoms arising from tumor growth, such as obstruction of a major blood vessel. Radiation therapy when given alone with curative intent has never been shown to improve survival from mesothelioma. The necessary radiation dose to treat mesothelioma that has not been surgically removed would be very toxic.
The prognosis for malignant mesothelioma remains disappointing, although there have been some modest improvements in prognosis from newer chemotherapies and multimodality treatments.[28] Treatment of malignant mesothelioma at earlier stages has a better prognosis, but cures are exceedingly rare. Clinical behavior of the malignancy is affected by several factors including the continuous mesothelial surface of the pleural cavity which favors local metastasis via exfoliated cells, invasion to underlying tissue and other organs within the pleural cavity, and the extremely long latency period between asbestos exposure and development of the disease. The histological subtype and the patient's age and health status also help predict prognosis. The epithelioid histology responds better to treatment and has a survival advantage over sarcomatoid histology.[29]
The mesothelium consists of a single layer of flattened to cuboidal cells forming the epithelial lining of the serous cavities of the body including the peritoneal, pericardial and pleural cavities. Deposition of asbestos fibers in the parenchyma of the lung may result in the penetration of the visceral pleura from where the fiber can then be carried to the pleural surface, thus leading to the development of malignant mesothelial plaques. The processes leading to the development of peritoneal mesothelioma remain unresolved, although it has been proposed that asbestos fibers from the lung are transported to the abdomen and associated organs via the lymphatic system. Additionally, asbestos fibers may be deposited in the gut after ingestion of sputum contaminated with asbestos fibers.
Pleural contamination with asbestos or other mineral fibers has been shown to cause cancer. Long thin asbestos fibers (blue asbestos, amphibole fibers) are more potent carcinogens than "feathery fibers" (chrysotile or white asbestos fibers).[6] However, there is now evidence that smaller particles may be more dangerous than the larger fibers. They remain suspended in the air where they can be inhaled, and may penetrate more easily and deeper into the lungs. "We probably will find out a lot more about the health aspects of asbestos from [the World Trade Center attack], unfortunately," said Dr. Alan Fein, chief of pulmonary and critical-care medicine at North Shore-Long Island Jewish Health System. Dr. Fein has treated several patients for "World Trade Center syndrome" or respiratory ailments from brief exposures of only a day or two near the collapsed buildings.[27]
Mesothelioma development in rats has been demonstrated following intra-pleural inoculation of phosphorylated chrysotile fibers. It has been suggested that in humans, transport of fibers to the pleura is critical to the pathogenesis of mesothelioma. This is supported by the observed recruitment of significant numbers of macrophages and other cells of the immune system to localized lesions of accumulated asbestos fibers in the pleural and peritoneal cavities of rats. These lesions continued to attract and accumulate macrophages as the disease progressed, and cellular changes within the lesion culminated in a morphologically malignant tumor.
Experimental evidence suggests that asbestos acts as a complete carcinogen with the development of mesothelioma occurring in sequential stages of initiation and promotion. The molecular mechanisms underlying the malignant transformation of normal mesothelial cells by asbestos fibers remain unclear despite the demonstration of its oncogenic capabilities (see next-but-one paragraph). However, complete in vitro transformation of normal human mesothelial cells to malignant phenotype following exposure to asbestos fibers has not yet been achieved. In general, asbestos fibers are thought to act through direct physical interactions with the cells of the mesothelium in conjunction with indirect effects following interaction with inflammatory cells such as macrophages.
Analysis of the interactions between asbestos fibers and DNA has shown that phagocytosed fibers are able to make contact with chromosomes, often adhering to the chromatin fibers or becoming entangled within the chromosome. This contact between the asbestos fiber and the chromosomes or structural proteins of the spindle apparatus can induce complex abnormalities. The most common abnormality is monosomy of chromosome 22. Other frequent abnormalities include structural rearrangement of 1p, 3p, 9p and 6q chromosome arms.
Common gene abnormalities in mesothelioma cell lines include deletion of the tumor suppressor genes:
Asbestos has also been shown to mediate the entry of foreign DNA into target cells. Incorporation of this foreign DNA may lead to mutations and oncogenesis by several possible mechanisms:
Asbestos fibers have been shown to alter the function and secretory properties of macrophages, ultimately creating conditions which favour the development of mesothelioma. Following asbestos phagocytosis, macrophages generate increased amounts of hydroxyl radicals, which are normal by-products of cellular anaerobic metabolism. However, these free radicals are also known clastogenic and membrane-active agents thought to promote asbestos carcinogenicity. These oxidants can participate in the oncogenic process by directly and indirectly interacting with DNA, modifying membrane-associated cellular events, including oncogene activation and perturbation of cellular antioxidant defences.
Asbestos also may possess immunosuppressive properties. For example, chrysotile fibres have been shown to depress the in vitro proliferation of phytohemagglutinin-stimulated peripheral blood lymphocytes, suppress natural killer cell lysis and significantly reduce lymphokine-activated killer cell viability and recovery. Furthermore, genetic alterations in asbestos-activated macrophages may result in the release of potent mesothelial cell mitogens such as platelet-derived growth factor (PDGF) and transforming growth factor-β (TGF-β) which in turn, may induce the chronic stimulation and proliferation of mesothelial cells after injury by asbestos fibres.
Diagnosing mesothelioma is often difficult, because the symptoms are similar to those of a number of other conditions. Diagnosis begins with a review of the patient's medical history. A history of exposure to asbestos may increase clinical suspicion for mesothelioma. A physical examination is performed, followed by chest X-ray and often lung function tests. The X-ray may reveal pleural thickening commonly seen after asbestos exposure and increases suspicion of mesothelioma. A CT (or CAT) scan or an MRI is usually performed. If a large amount of fluid is present, abnormal cells may be detected by cytopathology if this fluid is aspirated with a syringe. For pleural fluid, this is done by thoracentesis or tube thoracostomy (chest tube); for ascites, with paracentesis or ascitic drain; and for pericardial[disambiguation needed ] effusion with pericardiocentesis. While absence of malignant cells on cytology does not completely exclude mesothelioma, it makes it much more unlikely, especially if an alternative diagnosis can be made (e.g. tuberculosis, heart failure). Unfortunately, the diagnosis of malignant mesothelioma by cytology alone is difficult, even with expert pathologists.
Generally, a biopsy is needed to confirm a diagnosis of malignant mesothelioma. A doctor removes a sample of tissue for examination under a microscope by a pathologist. A biopsy may be done in different ways, depending on where the abnormal area is located. If the cancer is in the chest, the doctor may perform a thoracoscopy. In this procedure, the doctor makes a small cut through the chest wall and puts a thin, lighted tube called a thoracoscope into the chest between two ribs. Thoracoscopy allows the doctor to look inside the chest and obtain tissue samples. Alternatively, the chest surgeon might directly open the chest (thoracotomy). If the cancer is in the abdomen, the doctor may perform a laparoscopy. To obtain tissue for examination, the doctor makes a small incision in the abdomen and inserts a special instrument into the abdominal cavity. If these procedures do not yield enough tissue, more extensive diagnostic surgery may be necessary.
Immunohistochemical studies play an important role for the pathologist in differentiating malignant mesothelioma from neoplastic mimics. There are numerous tests and panels available. No single test is perfect for distinguishing mesothelioma from carcinoma or even benign versus malignant.
Typical immunohistochemistry results
Positive Negative
EMA (epithelial membrane antigen) in a membranous distribution CEA (carcinoembryonic antigen)
WT1 (Wilms' tumour 1) B72.3
Calretinin MOC-3 1
Mesothelin-1 CD15
Cytokeratin 5/6 Ber-EP4
HBME-1 (human mesothelial cell 1) TTF-1 (thyroid transcription factor-1)
There are three histological types of malignant mesothelioma: (1) Epithelioid; (2) Sarcomatoid; and (3) Biphasic (Mixed). Epithelioid comprises about 50-60% of malignant mesothelioma cases and generally holds a better prognosis than the Sarcomatoid or Biphasic subtypes.[22]
Family members and others living with asbestos workers have an increased risk of developing mesothelioma, and possibly other asbestos related diseases.[20][21] This risk may be the result of exposure to asbestos dust brought home on the clothing and hair of asbestos workers. To reduce the chance of exposing family members to asbestos fibres, asbestos workers are usually required to shower and change their clothing before leaving the workplace.
Exposure to asbestos fibers has been recognized as an occupational health hazard since the early 20th century. Numerous epidemiological studies have associated occupational exposure to asbestos with the development of pleural plaques, diffuse pleural thickening, asbestosis, carcinoma of the lung and larynx, gastrointestinal tumors, and diffuse malignant mesothelioma of the pleura and peritoneum. Asbestos has been widely used in many industrial products, including cement, brake linings, gaskets, roof shingles, flooring products, textiles, and insulation.
Commercial asbestos mining at Wittenoom, Western Australia, occurred between 1945 and 1966. A cohort study of miners employed at the mine reported that while no deaths occurred within the first 10 years after crocidolite exposure, 85 deaths attributable to mesothelioma had occurred by 1985. By 1994, 539 reported deaths due to mesothelioma had been reported in Western Australia.
Incidence of mesothelioma had been found to be higher in populations living near naturally occurring asbestos. For example, in central Cappadocia, Turkey, mesothelioma was causing 50% of all deaths in three small villages — Tuzköy, Karain and Sarıhıdır. Initially, this was attributed to erionite, a zeolite mineral with similar properties to asbestos. Recently, however, detailed epidemiological investigation showed that erionite causes mesothelioma mostly in families with a genetic predisposition.[18][19] The documented presence of asbestos fibers in water supplies and food products has fostered concerns about the possible impact of long-term and, as yet, unknown exposure of the general population to these fibers.
Working with asbestos is the major risk factor for mesothelioma.[5] In the United States, asbestos is the major cause of malignant mesothelioma and has been considered "indisputably"[6] associated with the development of mesothelioma. Indeed, the relationship between asbestos and mesothelioma is so strong that many consider mesothelioma a “signal” or “sentinel” tumor.[7][8][9][10] A history of asbestos exposure exists in most cases. However, mesothelioma has been reported in some individuals without any known exposure to asbestos. In rare cases, mesothelioma has also been associated with irradiation, intrapleural thorium dioxide (Thorotrast), and inhalation of other fibrous silicates, such as erionite. Some studies suggest that simian virus 40 (SV40) may act as a cofactor in the development of mesothelioma.[11]
Asbestos was known in antiquity, but it was not mined and widely used commercially until the late 19th century. Its use greatly increased during World War II. Since the early 1940s, millions of American workers have been exposed to asbestos dust. Initially, the risks associated with asbestos exposure were not publicly known. However, an increased risk of developing mesothelioma was later found among shipyard workers, people who work in asbestos mines and mills, producers of asbestos products, workers in the heating and construction industries, and other tradespeople. Today, the official position of the U.S. Occupational Safety and Health Administration (OSHA) and the U.S. EPA is that protections and "permissible exposure limits" required by U.S. regulations, while adequate to prevent most asbestos-related non-malignant disease, they are not adequate to prevent or protect against asbestos-related cancers such as mesothelioma.[12] Likewise, the British Government's Health and Safety Executive (HSE) states formally that any threshold for mesothelioma must be at a very low level and it is widely agreed that if any such threshold does exist at all, then it cannot currently be quantified. For practical purposes, therefore, HSE assumes that no such "safe" threshold exists. Others have noted as well that there is no evidence of a threshold level below which there is no risk of mesothelioma.[13] There appears to be a linear, dose-response relationship, with increasing dose producing increasing disease.[14] Nevertheless, mesothelioma may be related to brief, low level or indirect exposures to asbestos.[6] The dose necessary for effect appears to be lower for asbestos-induced mesothelioma than for pulmonary asbestosis or lung cancer.[6] Again, there is no known safe level of exposure to asbestos as it relates to increased risk of mesothelioma.
The duration of exposure to asbestos causing mesothelioma can be short. For example, cases of mesothelioma have been documented with only 1–3 months of exposure.[15][16] People who work with asbestos wear personal protective equipment to lower their risk of exposure.
Latency, the time from first exposure to manifestation of disease, is prolonged in the case of mesothelioma. It is virtually never less than fifteen years and peaks at 30–40 years.[6] In a review of occupationally related mesothelioma cases, the median latency was 32 years.[17] Based upon the data from Peto et al., the risk of mesothelioma appears to increase to the third or fourth power from first exposure.[14]
Symptoms or signs of mesothelioma may not appear until 20 to 50 years (or more) after exposure to asbestos. Shortness of breath, cough, and pain in the chest due to an accumulation of fluid in the pleural space (pleural effusion) are often symptoms of pleural mesothelioma.
Symptoms of peritoneal mesothelioma include weight loss and cachexia, abdominal swelling and pain due to ascites (a buildup of fluid in the abdominal cavity). Other symptoms of Peritoneal Mesothelioma may include bowel obstruction, blood clotting abnormalities, anemia, and fever. If the cancer has spread beyond the mesothelium to other parts of the body, symptoms may include pain, trouble swallowing, or swelling of the neck or face.
These symptoms may be caused by mesothelioma or by other, less serious conditions.
Mesothelioma that affects the pleura can cause these signs and symptoms:
  • Chest wall pain
  • Pleural effusion, or fluid surrounding the lung
  • Shortness of breath
  • Fatigue or anemia
  • Wheezing, hoarseness, or cough
  • Blood in the sputum (fluid) coughed up (hemoptysis)
In severe cases, the person may have many tumor masses. The individual may develop a pneumothorax, or collapse of the lung. The disease may metastasize, or spread, to other parts of the body.
Tumors that affect the abdominal cavity often do not cause symptoms until they are at a late stage. Symptoms include:
  • Abdominal pain
  • Ascites, or an abnormal buildup of fluid in the abdomen
  • A mass in the abdomen
  • Problems with bowel function
  • Weight loss
In severe cases of the disease, the following signs and symptoms may be present:
  • Blood clots in the veins, which may cause thrombophlebitis
  • Disseminated intravascular coagulation, a disorder causing severe bleeding in many body organs
  • Jaundice, or yellowing of the eyes and skin
  • Low blood sugar level
  • Pleural effusion
  • Pulmonary emboli, or blood clots in the arteries of the lungs
  • Severe ascites
A mesothelioma does not usually spread to the bone, brain, or adrenal glands. Pleural tumors are usually found only on one side of the lungs.
Mesothelioma, more precisely malignant mesothelioma, is a rare form of cancer that develops from the protective lining that covers many of the body's internal organs, the mesothelium. It is usually caused by exposure to asbestos.[1]
Its most common site is the pleura (outer lining of the lungs and internal chest wall), but it may also occur in the peritoneum (the lining of the abdominal cavity), the pericardium (a sac that surrounds the heart),[2] or the tunica vaginalis (a sac that surrounds the testis).
Most people who develop mesothelioma have worked on jobs where they inhaled asbestos, or they have been exposed to asbestos dust and fiber in other ways. It has also been suggested that washing the clothes of a family member who worked with asbestos can put a person at risk for developing mesothelioma.[3] Unlike lung cancer, there is no association between mesothelioma and smoking, but smoking greatly increases the risk of other asbestos-induced cancers.[4] Those who have been exposed to asbestos have collected damages for asbestos-related disease, including mesothelioma. Compensation via asbestos funds or lawsuits is an important issue in law practices regarding mesothelioma (see asbestos and the law).
The symptoms of mesothelioma include shortness of breath due to pleural effusion (fluid between the lung and the chest wall) or chest wall pain, and general symptoms such as weight loss. The diagnosis may be suspected with chest X-ray and CT scan, and is confirmed with a biopsy (tissue sample) and microscopic examination. A thoracoscopy (inserting a tube with a camera into the chest) can be used to take biopsies. It allows the introduction of substances such as talc to obliterate the pleural space (called pleurodesis), which prevents more fluid from accumulating and pressing on the lung. Despite treatment with chemotherapy, radiation therapy or sometimes surgery, the disease carries a poor prognosis. Research about screening tests for the early detection of mesothelioma is ongoing.